| (%i1) | load("cliffordan")$ |
Euclidean 3D space
| (%i2) | clifford(e,3); |
| (%i5) |
r:cvect([x,y,z]); |
Green function
| (%i11) | G:r/sqrt(-cnorm(r))^3/(4*%pi); |
| (%i19) | mvectdiff(G,r)=0; |
Potential
| (%i10) | P:-1/sqrt(-cnorm(r))/(4*%pi); |
| (%i13) | mvectdiff(P,r)=G; |
Homogeneous Poisson equation
| (%i20) | dependsv(F,[x,y,z])$ |
| (%i17) | mvectdiff(F,r,2)=0; |
P solves the equation
| (%i18) | mvectdiff(P,r,2)=0; |
Define cyclindrical coordinates
| (%i21) | declare( [rho, phi], scalar)$ |
| (%i24) | cyl_eq:[x=rho*cos(phi), y=rho*sin(phi)]; |
| (%i25) | r_c:coordsubst(r, cyl_eq); |
Green function in cylindrical coordinates
| (%i26) | GG_c:coordsubst(G, cyl_eq),factor; |
| (%i28) | mvectdiff(GG_c,r_c)=0; |
| (%i30) | dependsv(F,[x,y,z,rho, phi])$ |
Homogeneous Poisson equation
| (%i31) | mvectdiff(F,r_c,2)=0; |
| (%i32) | V:coordsubst(P,cyl_eq); |
| (%i33) | mvectdiff(V,r_c)=GG_c; |
V solves the equation
| (%i34) | mvectdiff(V,r_c,2)=0; |